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Abstract

The adhesion between a nano-scale rigid circular disc and an infinite elastic surface is investigated. By integrating
Lennard–Jones potential, the force by the rigid circular disc can be obtained. Then, using the path following method,
the load–displacement relationship and pressure distribution are obtained. The proposed method can be extended to the
nanoadhesion of other types of bodies.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Nanoadhesion is an important issue in MEMS (microelectromechanical system) (Bhushan, 1999). There
exist extensive engineering literatures on various aspects of this field. For example, the adhesion between
spheres was investigated by Greenwood (1997) and Feng (2000). The adhesion for elastic beam was inves-
tigated by Han et al. (2002).

In this paper, we focus on the adhesion between a nano-scale rigid circular disc and an infinite elastic
surface, which is important for micromachines. This is a classical subject, which was investigated by Ken-
dall (1971) and by Persson (2003). Kendal used the energy method, and found the pull-off force. Persson
followed Kendall�s method, and found the pull-off stress and the critical radius. In his paper, Persson
showed that for very small solids the breaking of the adhesive bond will not occur by crack propagation
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Nomenclature

A non-dimensional radius of circular disc, A = a/e
a radius of circular disc
B non-dimensional approach of distance, B = b/e
Bp non-dimensional pull-off distance
b approach of distance
Cij element of influence matrix
E Young�s modulus
E* equivalent Young�s modulus
e the minimum of the potential
F pull-off force
F force vector
f force on an element of the surface
f, f(r,h,a) force vector on an element of the surface
G(H), Gi(Hi) equation for Newton–Raphson method
G inter-surface force kernel (a vector function)
H non-dimensional distance, H = h/e
HA Hamaker constant
h, h(r) distance between the circular disc and the surface
K(r) the complete elliptic integral of the first kind
n1, n2 unit vector normal to surface
P non-dimensional load, P = pe/Dc
p, p(r) stress
R non-dimensional coordinate, R = r/e
r polar coordinate for infinite surface
S non-dimensional distance, S = s/e
S1, S2 surface area
s distance
t distance
Utot total energy
u(r) deflection
V1, V2 volume
W non-dimensional load, W ¼ Dce

R
pdr

w(s) potential between two molecules
x polar coordinate for circular disc
x1, x2 vector of the coordinates of a point
z deformation of the surface
a a parameter
b a parameter
Dc surface energy
e the distance at which e ¼ ð 2

15 Þ
1=6r

l parameter, l ¼ ð Dc
E�e2 Þ

2=3

m Poisson ratio
q1, q2 the number densities of bodies
r the distance at which Lennard–Jones potential is zero
h angular coordinate
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as is usually the case for macroscopic bodies, but the bond-breaking will be more uniform over the contact
area. Both Kendall and Persson did not find the pressure distribution.

In order to find the pressure distribution, we start from the Lennard–Jones potential. By using Argento
et al.�s (1997) method, the adhesive force can be obtained. Then, we follow Feng�s (2000) method and used
Keller�s (1977, 1983) method of arc-continuation. The load–displacement relation and pressure distribution
can be obtained.

The pull-off force by the current method is compared with Persson�s (2003) result. The proposed method
can be extended to other problem, such as the adhesion between a nano-sphere and an infinite elastic surface.
2. Mathematical description

The current system is shown in Fig. 1. A circular disc with radius a makes perfect contact with an infinite
elastic surface. When a detaching force F is applied to a circular disc, adhesion occurs between the circular
disc and the infinite surface.

2.1. Kendall�s and Persson’s results

When a pulling force F is applied to the disc, the elastic deformation is (Johnson, 1985)
z ¼ F ð1� m2Þ
2Ea

¼ F
2E�a

ð1Þ
where z is the deformation normal to the surface, E is the Young�s modulus, m is the Poisson ratio, E* is the
equivalent Young�s modulus (E� ¼ E

1�m2), and a is the radius of the disc.
Kendall (1971) pointed that total energy is
U tot ¼ �Dcpa2 þ E�az2
The bond-breaking occurs when dUtot/da = 0. Thus, Kendall (1971) found that the pull-off force is
F ¼ 2aE�z ¼ ð8pa3E�DcÞ1=2 ð2Þ
Rigid
Disc

Elastic
Material

2a

F

Fig. 1. The adhesion between a rigid disc and an infinite elastic surface.
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Persson (2003) found that the relation between the disc radius and the deformation of the surface is
a ¼ E�z2

2pDc
ð3Þ
Persson (2003) also found that the pull-off stress is
p ¼ 8E�Dc
pa

� �1=2

ð4Þ
In fact, the pull-off stress is the average stress on the disc, not the stress on the surface. Since Eq. (1) assumes
that (Johnson, 1985)
pðrÞ ¼ F
2pa2

1� r2

a2

� ��1=2

ð5Þ
the pressure distribution on the surface should follow Eq. (5).

2.2. Nanoadhesion

When considering the nano-scale adhesion, Derjaguin approximation (1934) is usually used (Green-
wood, 1997; Feng, 2000). However, Derjaguin approximation is accurate for smooth convex surfaces with
curvature that is small compared to the separation between the bodies (Israelachvili, 1991; Jagota and Arg-
ento, 1997). It is not suitable for the current case. Thus, we start from the interaction between molecules.

The interaction between two molecules can be described by Lennard–Jones potential.
wðsÞ ¼ 4e
r
s

� �12

� r
s

� �6
� �

ð6Þ
where w(s) is the potential between two molecules (energy), e is the minimum of the potential (energy), r is
the distance at which the potential is zero (length), and s is the distance between two atoms (length).

The force between two bodies can be obtained by integrating Eq. (6) over the volumes. By applying the
divergence theorem, the force can be integrated over the surfaces instead (Argento et al., 1997; Jagota and
Argento, 1997).
F ¼ q1q2

Z
V 2

Z
V 1

r2wðsÞdV 1 dV 2 ¼ q1q2

Z
S2

Z
S1

n2ðG � n1ÞdS1 dS2
where
G ¼ ðx2 � x1Þ
s3

Z 1

s
wðtÞt2 dt
q1, q2 are the number densities of bodies 1 and 2 (number/volume).
Argento et al. (1997) said that the traction on the surface element of body 1 by the surface of body 2 can

be written as
f ¼ q1q2

Z
S2

n2GdS2

� �
� n1
Thus, the force acting an element of an infinite surface by a circular disc is
fðr; h; aÞ ¼ 4er6p2q1q2

3p2r3

r9

3

Z a

0

xdx
Z 2p

h¼0

ð0; 0;�1Þ h

ðr2 þ x2 � 2rx cos hþ h2Þ6
dh

(

�r3

Z a

0

xdx
Z 2p

h¼0

ð0; 0;�1Þ h

ðr2 þ x2 � 2rx cos hþ h2Þ3
dh

)
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where h is the distance between the circular disc and the infinite surface.
Now, we introduce a distance parameter
e ¼ 2

15

� �1=6

r

For the force and potential between two molecules, zero force and potential occur at r. But for the force
and potential between two infinite surfaces, zero force occurs at e. In this paper, the circular disc is larger
than a molecule, but is smaller than an infinite surface. The zero force should occur at the distance between
r and e. The result in Section 4 shows that zero force occurs at the distance at e.

For convenience, another two parameters are introduced. Hamaker constant is (Israelachvili, 1991)
HA ¼ 4er6p2q1q2
The surface energy is
Dc ¼ HA

16pe2
¼ er6pq1q2

4e2
Considering the force in z-direction only, the pressure becomes
pðsÞ ¼ 8Dc
3e

5e9

p

Z a

0

rdr
Z 2p

h¼0

hðsÞ
½r2 þ x2 � 2rx cos hþ hðsÞ2�6

dh

(

� 2e3

p

Z a

0

rdr
Z 2p

h¼0

hðsÞ
½r2 þ x2 � 2rx cos hþ hðsÞ2�3

dh

)
ð7Þ
2.3. Force and deformation

The deflection of a half-space with Young�s modulus E and Poisson ratio m under a normal point load p

is (Johnson, 1985)
uðrÞ ¼ pð1� m2Þ
pEr

¼ p
pE�r
where u(r) is the deflection and r is the distance from the point load.
For a general axisymmetric pressure distribution p(r), the deflection is
uðrÞ ¼ 4

pE�

Z 1

s¼0

pðsÞ s
sþ r

K
2

ffiffiffiffi
rs

p

r þ s

� �
ds
where K(Æ) is an elliptic integral.
The deformation of the surface is
zðrÞ ¼ 4

pE�

Z 1

s¼0

pðsÞ s
sþ r

K
2

ffiffiffiffi
rs

p

r þ s

� �
ds
where p(s) can be obtained from Eq. (7). The distance between the disc and the surfaces is the original one
added by the deformation.
hðrÞ ¼ bþ zðrÞ ¼ bþ 4

pE�

Z 1

s¼0

pðsÞ s
sþ r

K
2

ffiffiffiffi
rs

p

r þ s

� �
ds ð8Þ
where b is the approach of the surfaces. The deformation and pressure of the surface can be obtained by
solving Eqs. (7) and (8) simultaneously.
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2.4. Non-dimensionalization

Using e as the characteristic length. We set
H ¼ h
e
; B ¼ b

e
; Z ¼ z

e
; l ¼ Dc

E�e

� �2=3

R ¼ r
e
; S ¼ s

e
; A ¼ a

e
; P ¼ pe

Dc
where l is a parameter similar to Tabor�s parameter in the contact between two spheres. Eq. (8) becomes
HðRÞ � Bþ 4l3=2

p

Z 1

S¼0

P ðSÞ S
S þ R

K
2

ffiffiffiffiffiffi
RS

p

Rþ S

� �
dS ¼ 0 ð9Þ
Eq. (7) becomes
P ðRÞ ¼ 8

3

5

p

Z A

X¼0

X dX
Z 2p

h¼0

HðRÞ
½R2 þ X 2 � 2RX cos hþ HðRÞ2�6

dh

(

� 2

p

Z A

X¼0

X dX
Z 2p

h¼0

HðRÞ
½R2 þ X 2 � 2RX cos hþ HðRÞ2�3

dh

)
ð10Þ
The deformation can be obtained by
Z ¼ H � B
Eqs. (9) and (10) will be solved by Newton–Raphson method and Keller�s path following method. By
using such a method, the derivative will be used, which is
dP
dH

¼ 8

3

5

p

Z A

X¼0

X dX
Z 2p

h¼0

1

½R2 þ X 2 � 2RX cos hþ H 2�6
dh

(

� 2

p

Z A

X¼0

X dX
Z 2p

h¼0

1

½R2 þ X 2 � 2RX cos hþ H 2�3
dh

)

þ 8

3

5

p

Z A

X¼0

X dX
Z 2p

h¼0

�12H 2

½R2 þ X 2 � 2RX cos hþ H 2�7
dh

(

� 2

p

Z A

X¼0

X dX
Z 2p

h¼0

�6H 2

½R2 þ X 2 � 2RX cos hþ H 2�4
dh

)
ð11Þ
The two-dimensional integration can be reduced into one-dimensional integration, which is shown in
Appendix A.

We define a non-dimensional load as
W ¼ 2p
Z

PRdR ¼ 2p
eDc

Z
prdr ð12Þ
In terms of the non-dimensional parameter, we replace the deformation Z by the pull-off distance Bp, Eqs.
(2)–(4) become
W ¼ 2ABp

l3=2
¼ ð8pA3Þ1=2 1

l3=4
ð13Þ



1630 J.-J. Wu / International Journal of Solids and Structures 43 (2006) 1624–1637
A ¼
B2
p

2pl3=2
ð14Þ

P ¼ 8

pA

� �1=2
1

l

� �3=4

ð15Þ
Eqs. (13)–(15) will be compared with our results.
3. Numerical procedure

3.1. Discretization

We follow Feng�s method in the numerical procedure. In order to solve Eq. (9), we define a residue func-
tion as
GðHÞ ¼ HðRÞ � Bþ 4l3=2

p

Z 1

S¼0

P ðSÞ S
S þ R

K
2

ffiffiffiffiffiffi
RS

p

Rþ S

� �
dS ð16Þ
Since the pressure is concentrated in the area [0,A]. [0, 1.5A] is large enough for this problem. Eq. (16) is
discretized by dividing the one-dimensional domain [0,1.5A] into a finite number of elements. Each element
covers a subdomain confined by two end nodes. In the interval [Ri,Ri+1], the unknown H and P are inter-
polated linearly.
H ¼ Hið1� nÞ þ Hiþ1n

P ¼ P ið1� nÞ þ P iþ1n
Eq. (16) becomes
GiðHiÞ ¼ HiðRiÞ � Bþ 4l3=2

p

Z 1

S¼0

P ðSÞ S
S þ Ri

K
2

ffiffiffiffiffiffiffi
RiS

p

Ri þ S

� �
dS ð17Þ
As Greenwood (1997) pointed out, there is a singularity in the elliptic integral Eq. (17) when Ri = S. That is,
when integrating S over the element [Ri�1,Ri] or [Ri,Ri+1], the singularity occurs at Ri. On the elements
where singular integral occurs, the integral is decomposed into a non-singular part and a singular part.
The non-singular part is integrated by Gaussian quadrature. The singular part can be transformed into
non-singular two-dimensional integral by using
R 1

n¼0
f ðnÞ log ndn ¼ �

R 1

n¼0

R 1

g¼0
f ðgnÞdgdnR 1

n¼0 f ðnÞ logð1� nÞdn ¼ �
R 1

n¼0

R 1

g¼0 f ð1� gnÞdgdn

8<
:

which can be calculated by two-dimensional Gaussian quadrature (Feng, 2000).
Thus, Eq. (17) becomes
GiðHiÞ ¼ Hi � Bþ l3=2
X

CijP j ð18Þ
where Gi(Hi) and Hi means the equation and the gap at (Ri).

3.2. Newton–Raphson method and Keller�s path following method

Newton–Raphson method is usually used to solving a non-linear equation. Thus, Eq. (18) will be solved
by Newton–Raphson method.
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As Greenwood (1997) and Feng (2000) pointed out, for the adhesive contact between spheres, the turn-
ing point appeared with the S-shaped load–approach curve for large Tabor parameter. We suppose that the
turning point may appear for the adhesion between a circular disc and an infinite surface, too. Similar to
Feng�s work (2000), Keller�s method (1977, 1983) of arc-length continuation is used to obtain the solution
in continuation around the turning point for the current problem.
4. Results and discussion

For the case in Attard and Parker�s paper (1992) (HA = 10�20 J m�3, e = 0.5 nm, E* = 1010 J m�3),
l = 0.003. For the case in Persson�s paper (2003) (Dc = 3 meV/A2, e = 3 Å, E* = 1011 J m�3), l = 0.0136.
Thus, we choose l = 0.1, 0.01 and 0.001 for the current problem. As for the radius of the disc, we assume
that a = 10 nm, 100 nm and 1 lm. If e = 0.5 nm, A = 20,200,2000. Therefore, we simulate the nanoadhe-
sion for the following cases:
A ¼ 20; 200; 2000

l ¼ 0.001; 0.01; 0.1
Totally, nine cases are investigated. We use 601 grids (600 elements) with length L = 1.5A.
First of all, the load–approach relation is investigated. From Eq. (13), Wl3/2/A is linear with pull-off

distance Bp. Thus, we plot the figure in B vs. Wl3/2/A. The curves are shown Figs. 2–4. It is found that
the shapes of the curves are similar. It is also found that there is S shape for large l. All the curves show
that zeros load occurs at B = �1. That is, the zero force occurs at the distance e.

The pull-off occurs at negative peak value of W (Feng, 2001). We plot the pull-off pressure distribution
and profile for some typical cases in Figs. 5–8. There are two types of pressure distributions and deforma-
tion distribution. For large A and l, the deformation is nearly uniform in the contact area. But the adhesion
pressure is not uniform, and does not follow Eq. (5), either. The edge of the flattened area coincides well
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with the point where the tensile stress reaches its peaks (Feng, 2000, 2001). At such cases, we can define the
edge of contact radius as the maximum adhesion occurs. For these cases, we also find that the contact ra-
dius is larger as A and l are larger.

For small A and l, the adhesion force is nearly uniform in the contact area. But the deformation is very
small, and is not uniform. For these cases, it seems no adhesion happens at all. It is difficult to define the
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contact radius. At the current research, we define the edge of the contact radius as the location where the
pressure is 95% of the maximum pressure. Thus, the contact radius is nearly equal to A.

Fig. 9 shows pull-off distance Bp vs. l for different A. It is shown that Eq. (14) overestimate the pull-off
distance Bp for small A and l. That is, the pull-off distance is less than expected. And for l = 0.001, the
pull-off distance is too small to be estimated.
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Fig. 10 shows A vs. W for different l. It is shown that Eq. (13) overestimate the pressure for small A and
l. Eq. (13) can predict W only for l = 0.1.

From Figs. 9 and 10, it shows that Persson�s result can predict the nanoadhesion only for l = 0.1. That
is, if the surface is too hard or the surface energy is too small, Eqs. (13)–(15) do not work well.
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5. Conclusion

A numerical method for the adhesion between a circular disc and an infinite elastic surface is proposed.
By integrating Lennard–Jones potential, the force by the rigid circular disc can be obtained. Then, using
Newton–Raphson method and Keller�s path following method, the load–displacement relationship and
pressure distribution are obtained. The results show that Persson�s prediction (2003) does not work well
for small l.
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The current method can be extended to other types of bodies, such as the nanoadhesion between sphere
and an infinite elastic surface. Also based on the calculation proposed in this paper, we can test if the bond-
breaking will be more uniform when the condition derived by Persson (2003) is satisfied.
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Appendix A

For a > b,
Z 2p

h¼0

dh
ðaþ b cos hÞ ¼

2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q

For n P 1 and a > b,
Z 2p

h¼0

dh

ðaþ b cos hÞnþ1
¼ ð2n� 1Þa

nða2 � b2Þ

Z 2p

h¼0

dh
ðaþ b cos hÞn �

ðn� 1Þ
nða2 � b2Þ

Z 2p

h¼0

dh

ðaþ b cos hÞn�1
Set
Kn ¼
Z 2p

h¼0

dh
ðaþ b cos hÞn
Then,
K1 ¼
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q

Knþ1 ¼
ð2n� 1Þa
nða2 � b2Þ

Kn �
n� 1

nða2 � b2Þ
Kn�1 for n P 1
All Kn can be obtained recursively.
We need to integrate Eqs. (10) and (11). Thus, set
a ¼ R2 þ X 2 þ H 2

b ¼ �2RX
Then,
P ðRÞ ¼ 8

3

1

p

Z A

X¼0

ð5K6 � 2K3ÞHðRÞX dX
� 	

dP
dH

¼ 8

3

1

p

Z A

X¼0

ð5K6 � 2K3 � 60K7H 2 þ 12K6H 2ÞX dX
� 	
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The two-dimensional integration is reduced into a one-dimensional integration, which can be calculated by
using Gaussian quadrature.
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