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Abstract

The adhesion between a nano-scale rigid circular disc and an infinite elastic surface is investigated. By integrating
Lennard-Jones potential, the force by the rigid circular disc can be obtained. Then, using the path following method,
the load—displacement relationship and pressure distribution are obtained. The proposed method can be extended to the
nanoadhesion of other types of bodies.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Nanoadhesion is an important issue in MEMS (microelectromechanical system) (Bhushan, 1999). There
exist extensive engineering literatures on various aspects of this field. For example, the adhesion between
spheres was investigated by Greenwood (1997) and Feng (2000). The adhesion for elastic beam was inves-
tigated by Han et al. (2002).

In this paper, we focus on the adhesion between a nano-scale rigid circular disc and an infinite elastic
surface, which is important for micromachines. This is a classical subject, which was investigated by Ken-
dall (1971) and by Persson (2003). Kendal used the energy method, and found the pull-off force. Persson
followed Kendall’s method, and found the pull-off stress and the critical radius. In his paper, Persson
showed that for very small solids the breaking of the adhesive bond will not occur by crack propagation
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Nomenclature

non-dimensional radius of circular disc, 4 = a/e
radius of circular disc

non-dimensional approach of distance, B = b/
non-dimensional pull-off distance

approach of distance

element of influence matrix

Young’s modulus

equivalent Young’s modulus

the minimum of the potential

pull-off force

force vector

force on an element of the surface

f, f(r,h,a) force vector on an element of the surface
G(H), G{H;) equation for Newton—Raphson method

o]

<

*
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G inter-surface force kernel (a vector function)
H non-dimensional distance, H = h/e¢
H, Hamaker constant

h, h(r) distance between the circular disc and the surface
K(r)  the complete elliptic integral of the first kind
n;, n, unit vector normal to surface

P non-dimensional load, P = pe/Ay

p, p(r) stress

R non-dimensional coordinate, R = r/e
r polar coordinate for infinite surface
S non-dimensional distance, S = s/¢
S1, S» surface area

S distance

t distance

Uiot total energy

u(r) deflection

Vi, Vo volume

w non-dimensional load, W = Aye [ pdr
w(s) potential between two molecules

X polar coordinate for circular disc
X1, Xo  vector of the coordinates of a point
z deformation of the surface

o a parameter

B a parameter

Ay surface energy

€ the distance at which ¢ = (2)"%¢

U parameter, p = ( Eé;fz )23

v Poisson ratio

p1, p» the number densities of bodies

a the distance at which Lennard-Jones potential is zero

0 angular coordinate
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as is usually the case for macroscopic bodies, but the bond-breaking will be more uniform over the contact
area. Both Kendall and Persson did not find the pressure distribution.

In order to find the pressure distribution, we start from the Lennard-Jones potential. By using Argento
et al.’s (1997) method, the adhesive force can be obtained. Then, we follow Feng’s (2000) method and used
Keller’s (1977, 1983) method of arc-continuation. The load—displacement relation and pressure distribution
can be obtained.

The pull-off force by the current method is compared with Persson’s (2003) result. The proposed method
can be extended to other problem, such as the adhesion between a nano-sphere and an infinite elastic surface.

2. Mathematical description

The current system is shown in Fig. 1. A circular disc with radius @« makes perfect contact with an infinite
elastic surface. When a detaching force F is applied to a circular disc, adhesion occurs between the circular
disc and the infinite surface.

2.1. Kendall's and Persson’s results

When a pulling force F is applied to the disc, the elastic deformation is (Johnson, 1985)

:F(l—vz) F

2Ea  2Ea (1)

where z is the deformation normal to the surface, £ is the Young’s modulus, v is the Poisson ratio, £* is the
equivalent Young’s modulus (E* = 1£3), and a is the radius of the disc.
Kendall (1971) pointed that total energy is

Uit = —Ayna® + E*az?
The bond-breaking occurs when dU,./da = 0. Thus, Kendall (1971) found that the pull-off force is

F =2aE'z = (8nad’E*Ay)'? (2)
(iR
Rigid
/Di&:
2a
Elastic
Material

Fig. 1. The adhesion between a rigid disc and an infinite elastic surface.
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Persson (2003) found that the relation between the disc radius and the deformation of the surface is

E*Z?
Persson (2003) also found that the pull-off stress is
8E*Ay 1/2
= 4
= () (@)

In fact, the pull-off stress is the average stress on the disc, not the stress on the surface. Since Eq. (1) assumes
that (Johnson, 1985)

pr) = % (1 —:;)1/2 ()

the pressure distribution on the surface should follow Eq. (5).
2.2. Nanoadhesion

When considering the nano-scale adhesion, Derjaguin approximation (1934) is usually used (Green-
wood, 1997; Feng, 2000). However, Derjaguin approximation is accurate for smooth convex surfaces with
curvature that is small compared to the separation between the bodies (Israelachvili, 1991; Jagota and Arg-
ento, 1997). It is not suitable for the current case. Thus, we start from the interaction between molecules.

The interaction between two molecules can be described by Lennard—Jones potential.

=40 ()] g

where w(s) is the potential between two molecules (energy), e is the minimum of the potential (energy), o is
the distance at which the potential is zero (length), and s is the distance between two atoms (length).

The force between two bodies can be obtained by integrating Eq. (6) over the volumes. By applying the
divergence theorem, the force can be integrated over the surfaces instead (Argento et al., 1997; Jagota and
Argento, 1997).

F:p1p2/ / VZW<S)dV1dV2 :plp2/ / l'lz(G'Ill)dSldS2
Vy JV Sy JS
where
X; — X o
G (2s31)/9 w(n)f dt
p1, p» are the number densities of bodies 1 and 2 (number/volume).

Argento et al. (1997) said that the traction on the surface element of body 1 by the surface of body 2 can
be written as

f= <p1p2/ ll2GdS2> 3 1 0]
A

Thus, the force acting an element of an infinite surface by a circular disc is

fir ) = 4T [ 0.0, " o
3Inlo 3 ) =0 (r2 4+ x2 = 2rxcos 0 + )

a 2n
—63/ xdx [ (0,0,—1) 4 55do
0 0=0 (r2 +x2 — 2rxcos 0 + h*)
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where / is the distance between the circular disc and the infinite surface.
Now, we introduce a distance parameter

2 1/6
&= (E) o

For the force and potential between two molecules, zero force and potential occur at ¢. But for the force
and potential between two infinite surfaces, zero force occurs at ¢. In this paper, the circular disc is larger
than a molecule, but is smaller than an infinite surface. The zero force should occur at the distance between
o and e. The result in Section 4 shows that zero force occurs at the distance at e.

For convenience, another two parameters are introduced. Hamaker constant is (Israelachvili, 1991)

H, = 4ec’n?p,p,
The surface energy is

H, ed®npp,
l6ne2 42

Considering the force in z-direction only, the pressure becomes

o) _8Ay{% /‘ h(s) a0

00 [r? + x> — 2rx cos 0 + h(s)?]
2¢3 h
e (5 w0 -
T Jo 0=0 [ +x2 — 2rxcos 0 + h(s)”]

2.3. Force and deformation

Ay =

The deflection of a half-space with Young’s modulus E and Poisson ratio v under a normal point load p
is (Johnson, 1985)

1 — 2
Mﬂ:p( V) _ P
nEr nE"r
where u(r) is the deflection and r is the distance from the point load.
For a general axisymmetric pressure distribution p(r), the deflection is

4 [ s 2./rs
u(r) o ﬁ /S:OP(S)S + rK<r + s) ds

where K(-) is an elliptic integral.
The deformation of the surface is

4 [ s 2./rs
z(r) o ﬁ /s:() p(s) s+ rK(r + s> ds

where p(s) can be obtained from Eq. (7). The distance between the disc and the surfaces is the original one
added by the deformation.

mm:b+4@=b+£;/:mw

where b is the approach of the surfaces. The deformation and pressure of the surface can be obtained by
solving Egs. (7) and (8) simultancously.

s+r \r+s (8)

SKCV%)m
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2.4. Non-dimensionalization

Using ¢ as the characteristic length. We set

A b 2/3
HZ*? BZ*& Z:ga ,u(Ay>

g € € E'e
rR=", s=2% 4=% p=P®
€ € € Ay
where p is a parameter similar to Tabor’s parameter in the contact between two spheres. Eq. (8) becomes
4'u3/2 00 S 2v/R
H(R)—-B P(S)——K dS=0 9
(R) + I /S:O ()S—I—R (R-l—S) ®)
Eq. (7) becomes
/ H(R)
X= 00 [R* + X* — 2RX cos 0 + H(R)]°
2 o H(R
—= / Xdx > 5 (R) 5=do (10)
T Jx=0 0=0 [R*+X° —2RX cos 0 + H(R)|
The deformation can be obtained by
Z=H-B

Eqgs. (9) and (10) will be solved by Newton-Raphson method and Keller’s path following method. By
using such a method, the derivative will be used, which is

TaRTEY / | "
0-0 [R* + X* — 2RX cos 0 + H?|

1
__/ Xdx >do
X=0 o—0 [R* +X? — 2RX cos 0 + H?|

X —-12H?
X=0 00 [R* +X? — 2RX cos 0 + H?)’
—6H?
_= X — —do (11)
X=0 0=0 [R° + X~ —2RX cos 0 + H”|

The two-dimensional integration can be reduced into one-dimensional integration, which is shown in

Appendix A.

We define a non-dimensional load as
2n

W=2n [ PRAR = — d 12
n/ eAy / prar (12)

In terms of the non-dimensional parameter, we replace the deformation Z by the pull-off distance B, Egs.
(2)—(4) become

24B, NV
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BZ
_ p
A=t (14)

- (2)70)"

Eqgs. (13)—(15) will be compared with our results.

3. Numerical procedure
3.1. Discretization

We follow Feng’s method in the numerical procedure. In order to solve Eq. (9), we define a residue func-
tion as

3/2 00
G(H) = H(R) —B+4’jE /SOP(S)&?K(%FIT;)C‘S (16)

Since the pressure is concentrated in the area [0, 4]. [0,1.54] is large enough for this problem. Eq. (16) is
discretized by dividing the one-dimensional domain [0, 1.54] into a finite number of elements. Each element
covers a subdomain confined by two end nodes. In the interval [R;, R;+], the unknown H and P are inter-
polated linearly.

H=H(1-¢& +H; ¢

P=P(1-¢)+Pig

Eq. (16) becomes

A S (2VRS
G;(H;)=H;,R))—B P(S K ds 17
(o) = ()~ 8+ [ i) e (R4S (1)

As Greenwood (1997) pointed out, there is a singularity in the elliptic integral Eq. (17) when R; = S. That is,
when integrating S over the element [R,_;, R;] or [R;, R;11], the singularity occurs at R;. On the elements
where singular integral occurs, the integral is decomposed into a non-singular part and a singular part.
The non-singular part is integrated by Gaussian quadrature. The singular part can be transformed into
non-singular two-dimensional integral by using

JLof(@)logede = — [ [ f(né)dydé
Jiof(&)log(1 = &)de = — [ [, f(1 —n&)dndé

which can be calculated by two-dimensional Gaussian quadrature (Feng, 2000).
Thus, Eq. (17) becomes

Gl'(H,-):H,-—B-F,UyZZCU‘Pj (18)

where G{(H,) and H; means the equation and the gap at (R)).
3.2. Newton—Raphson method and Keller’s path following method

Newton-Raphson method is usually used to solving a non-linear equation. Thus, Eq. (18) will be solved
by Newton—Raphson method.
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As Greenwood (1997) and Feng (2000) pointed out, for the adhesive contact between spheres, the turn-
ing point appeared with the S-shaped load—approach curve for large Tabor parameter. We suppose that the
turning point may appear for the adhesion between a circular disc and an infinite surface, too. Similar to
Feng’s work (2000), Keller’s method (1977, 1983) of arc-length continuation is used to obtain the solution
in continuation around the turning point for the current problem.

4. Results and discussion

For the case in Attard and Parker’s paper (1992) (H;=10""Jm >, ¢=0.5nm, E¥*=10""Jm™),
1= 0.003. For the case in Persson’s paper (2003) (Ay =3 meV/4% ¢ =3 A, E*=10"] m~—>), u=0.0136.
Thus, we choose u = 0.1, 0.01 and 0.001 for the current problem. As for the radius of the disc, we assume
that @ = 10 nm, 100 nm and 1 um. If ¢ = 0.5 nm, 4 = 20,200,2000. Therefore, we simulate the nanoadhe-
sion for the following cases:

A = 20,200, 2000
1 =0.001,0.01,0.1

Totally, nine cases are investigated. We use 601 grids (600 elements) with length L = 1.54.

First of all, the load-approach relation is investigated. From Eq. (13), W;f’/ %/ A is linear with pull-off
distance B,. Thus, we plot the figure in B vs. Wu*?/A. The curves are shown Figs. 2-4. It is found that
the shapes of the curves are similar. It is also found that there is S shape for large u. All the curves show
that zeros load occurs at B = —1. That is, the zero force occurs at the distance «.

The pull-off occurs at negative peak value of W (Feng, 2001). We plot the pull-off pressure distribution
and profile for some typical cases in Figs. 5-8. There are two types of pressure distributions and deforma-
tion distribution. For large 4 and u, the deformation is nearly uniform in the contact area. But the adhesion
pressure is not uniform, and does not follow Eq. (5), either. The edge of the flattened area coincides well

10} : e

215k

wWi2/n
\

s -
20 } :/ P
251 /

30t / i

35}

-40 L L L L L L L L L T
-22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
B

Fig. 2. Wu*?/A vs. H curve for it =0.1.
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1=0.01

wWin¥2iA
o
~
N

o — A=20
- - A=200
- — A=2000
T

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

u=0.001
O 47‘/ 1
S
005 ~. / J
~
S /
~N

NS '~ /
S 01} : : 1

= N . /

= N !
N /
-0.15 '\ / E
N /
N\
0.2} — ]
— A=20
- A=200
- — A=2000
-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
B

Fig. 4. W[4 vs. H curve for u = 0.001.

with the point where the tensile stress reaches its peaks (Feng, 2000, 2001). At such cases, we can define the
edge of contact radius as the maximum adhesion occurs. For these cases, we also find that the contact ra-
dius is larger as 4 and u are larger.

For small 4 and p, the adhesion force is nearly uniform in the contact area. But the deformation is very
small, and is not uniform. For these cases, it seems no adhesion happens at all. It is difficult to define the
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A=2000, pu=0.1
25 T T T

— profile
- - pressure
Circular Disc

20 F 1

15

Z(R) or P(R) x 10

10

0 500 1000 1500 2000 2500 3000
R

Fig. 5. Profile and pressure for 4= 0.1 and 4 = 2000.

A=200, u=0.1

T
Circular Disc — profile
- - pressure

Z(R) or P(R)

. . L
0 50 100 150 200 250 300
R

Fig. 6. Profile and pressure for = 0.1 and 4 = 200.

contact radius. At the current research, we define the edge of the contact radius as the location where the
pressure is 95% of the maximum pressure. Thus, the contact radius is nearly equal to A.

Fig. 9 shows pull-off distance By, vs. u for different 4. It is shown that Eq. (14) overestimate the pull-off
distance B, for small 4 and p. That is, the pull-off distance is less than expected. And for u = 0.001, the
pull-off distance is too small to be estimated.
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- pressure
o Circular Disc i
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Fig. 7. Profile and pressure for = 0.01 and 4 = 200.
5 A=20, 1=0.001
-+ pressure
1.8 + d
Circular Disc
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02} 1

0 1 1 1 1 S 1
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R

Fig. 8. Profile and pressure for 4 =0.001 and A4 = 20.

Fig. 10 shows A4 vs. W for different u. It is shown that Eq. (13) overestimate the pressure for small 4 and
u. Eq. (13) can predict W only for u=0.1.

From Figs. 9 and 10, it shows that Persson’s result can predict the nanoadhesion only for g = 0.1. That
is, if the surface is too hard or the surface energy is too small, Egs. (13)-(15) do not work well.
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Fig. 9. Hvs. .
10° . ;
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Fig. 10. W vs. A.

5. Conclusion

A numerical method for the adhesion between a circular disc and an infinite elastic surface is proposed.
By integrating Lennard-Jones potential, the force by the rigid circular disc can be obtained. Then, using
Newton—-Raphson method and Keller’s path following method, the load—displacement relationship and
pressure distribution are obtained. The results show that Persson’s prediction (2003) does not work well
for small p.
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The current method can be extended to other types of bodies, such as the nanoadhesion between sphere

and an infinite elastic surface. Also based on the calculation proposed in this paper, we can test if the bond-
breaking will be more uniform when the condition derived by Persson (2003) is satisfied.
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Appendix A

For o > f,

/2“ do _2n
o= (¢ + fcos0) o2 —

Forn > 1 and o> f,

/2“ do  @n-1) /2“ o (- /2“ do
0—0 (o + Bcos0)"™  n(e2 — ) Jooo (a4 Fcos )" n(a2 — f7) Jo—o (o« + Bcos0)"

Set
2n
K — / 40
o—o (a+ fcos0)
Then,
21
K =
o2 — ﬁz
K= (Zn_l)zaK,,f n—12 K, forn>1
n(a? — ) n(a? — )

All K,, can be obtained recursively.
We need to integrate Eqgs. (10) and (11). Thus, set

o=R+X>+H
B = —2RX
Then,

/X ’ (5K¢ — 2K3)H(R)XdX}

A
/ (5K¢ — 2K3 — 60K, H> + 12K6H2)XdX}
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The two-dimensional integration is reduced into a one-dimensional integration, which can be calculated by
using Gaussian quadrature.
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